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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1272

CRITICAL VELOCITIES OF ULTRACENTRIFUGES*

By V. I. Sokolov

In chemical industry, it is often necessary to deal with the
phenomenon of instability of operation of’ultracentrifuges that lead,
in a number of cases, to breakdo~,.m,accidents, and early wear of
the”instrument. In these cases, understanding of the phenomenon that
may help to remedy the condition is not always found.

The characteristics of the passage through the critical velocities
of ultracentrifuges are discussed a,ndthe corresponding practical con-
clusions are presented in this paper.

The Euler differential equations of rotation of a solid body are
applied.

The following constructions are made: the.fixed axes ~, q, and
~ with the origin at the point O (fig. 1); the axis of symmetry of the
centrifuge rotor Z; the nodal line I perpendicular to the plane of
~, z; and f%na.lly, the axis k perpendicular to the axes z, 1.

By applying
accorclizg to the

the Euler equations of the rotation of a solid body and
notation of Nikolai (reference 1.)

(1)

rotor may be considered as a regularThe rotation of the centrifuge
precession of the symmetrical gyroscope. The angular velocity w of
the rotor is therefore the angular velocity of this precession and the

*“Criticheskie Skorosti Supertsentrifug.” Zhurnal Tekhnicheskoi
Fiziki. (U.S.S.R.). Vol. XVI, no. 4, 1946, pp. 463-46S.
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axis # is the
of the drum, or
k, and Z tinat

it on the axes

axis of precession. By l~ying off the angular velocity
more accurately, the trihedron formed “Dythe axes I,
are assumed constant on the axis $, andby projecting
I, k, and z, the following equations are obtained:

.
?3-1=~

~~= m sin @

I

.

‘1 =
U)+u Cos pII

(2)

The velocity & is the result of the action of the Coriolis forces
and, by comparison with u, is a small magnitude. For simplification of
the solution, it is a,ssumedthat

.
rl = ccl Cos p (2a)

In other words, the assumption, often used in the theory of
vibrations, is made that the principal axis of the rotor z always
remains in the plane including the vertical (the initial position of
the axis of the shaft) and rotates with the same constant angular velo-
Ci’ty u with which the drum rotates.

The center of inertia of the rotor is assumed to lie on its axes
of symmetry 01 and 02. The axes I, k, and z till then be the

principal axes of inertia of the rotor at the point 01
because, from

the symmetry in regard to the axis z, all straight lines drawn perpen-
dicular to this axis through the point 01 are principal axes of

inertia. From this assumption, it follows that the moments ‘I)ak) ‘z
are

02 = Cr

where A and C are the equatorial (at point 01) and polar moments
of inertia.
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From equations (2)

‘1 ‘G

‘k
=Ansin~

Uz = CUJCos p
“}

By linearizing, the following equations are obtained:

P~=13

‘1 = Aj

ql = up

‘k

!

‘w

‘1
=(.D

Uz = cm

(3)

(4)

In equations (1), LIC= L= = O but the moment of the external

forces applied to the rotor relative to the axis I is determined “Dy
the expression

(5)

where % is the force applied at the end of “the rotor spindle that

produces unit rotation in the case where the spindle is immovably
fixed, smd G is the weight of the rotor; h and hl are sho~.min

figure 1.

“By neglecting the gravitational force and by replacing sin i3
by ~

L1 . 2
-%lh~ (6)

By substituting in the Euler equation the values of the magnitudes
that are used, the following equation is obtained:

(7)

3
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Because the nonuniform distribution of the mass of
results in a deviation of the principal axis of inertia
cal by the angle 130~equation (7) must be written as

where

Hence the critical velocity is

In order to complete

% is determined.

In the corresponding
the spindle is assumed to

spindle may be considered

rall h2
(_DCr=

A-C

the rotor
from the verti-

(s)

(9)

(10)

the solution and obtain a computation formula,

constructions of the usual type of centrifuges,
be of conical shape. In determining 511, the

as a beam with the large cross section ‘ouilt
in. The fixing of the beam corresponds to the joining to the spindle
with the centrifuge rotor (fig. 2).

On the basis of the Mohr formula, the displacement of the end of
the beam All may be determined by the equation

pox-z

(11)

Ja

where lM is the bending moment, E is the modulus of elasticity, and
I is the moment of inertia of the beam cross section; a and 2 are
shown in figure 2.

The moment of inertia at any section of the spindle is

1=< (12)
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%=
where r is the radius of the spindle cross section. As follows
from figure 2, r = kx and therefore

,,,

I
~k4 X4

=—
4

Conversely, the bending moment due to unit
distance a from the origin of the coordinates
beam) is

.>

M=x-a

The expressions for I and M
to give

rb
4

%1 = —nk4 E
I

Ja

By integrating and substituting

L

(13)

force applied at the
(at the ‘- - “tlp or zne

are substituted in

the limits

By denoting the largest”diameter of the spindle by
smallest dismeter by rO, k, a, and b are determined.

with figure 2

R - r.
k =—

-L

r.2
a
‘R-r.

rOZ
b =2+R

R
- ro =1=

o

equation (11)

(ha)

(14)

R and the
In accordance

(15)

(16)

(17)
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(18)

The obtained result is substituted in the formula for Ocr to
give

Because
critical, it
the critical

Factors
the critical

(19)

ultracentrifuges operate at velocities higher than the
is impossible to ignore the passing of the rotor t’hrough
point.

that affect the passage of the centrifuge rotor through
velocity ”sre to be considered.

Two methods exist by which the passage of the ultracentrifuge
rotors through the critical velocities may be affected. The first
method provides a rapid start that excludes an inadmissible increase
in ener~y of the forced vibrations smd may be applied to small centri-
fuges of various types. The second method restricts the amount of
bending of the spindle when passing through the critical point by means
of rings formed by suitable plates. The second method is the one
applied inost often and will be subsequently considered with the aid
of a method proposed by Kapitsa (reference 2).

As has been sho~m by Kapitsa, the critical point separates two
qualitatively different types of rotation. The transition from one
motion to the other for the ultracentrifuge is discussed.

In the first period of the motion, the gyroscopic couple balanced
by the elastic force of the spindle is determined by the left side of
equation (~).

For a certain value of the angular velocity ~~ the head of the
rotor touches the restricting surface. The gap between the head and
the ring is denoted by e. The angle of inclination of the rotor axis
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corresporiding”to the contact

PI = e/h3, where h3 is the

ring.

7

of the restricting ring will be equal to
distance from the lower support to the

The value of PI is substituted in equation (8) and is solved for

2 by replacing~ -h2511/C-A with the value Ucrz. Thus

%L
e

= ‘cr II (20)
3Po+e

When the velocity of the rotor reaches the value ~, the deflection
of the shaft ceases to increase because the restricting rinz prevents
it.

After contact snd with increase in angular velocity, the head of
the rotor presses against the restricting ring through the centrifu~al
force. At first the head slides along the surface. When the friction
force between the head and the ring reaches a certain value, however,
the rotor starts to roll along the ring in the opposite direction and
the spindle immediate~~ straightens out.

The value of ~ corresponding to the
spindle is determined.

Tilecontact of the rotor with the ring
moment of the external forces determined ‘oy

straightening out of the

changes the value or the
equation (l). The moment

of t,hereaction force of the ring Qh3 is added to the moment of the
elastic force of the bending spindle.

The angle between the plane of action of the gyroscopic moment and
the bending plane including the point of contact is denoted by y; the
moment acting in this case is determined by the equation

‘ By denoting as Q the reaction force of the ring, the following
equation mq~ be written:

I Icl.? c -A PI + Po Cos r =- b11h20-Qh3 (21)
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The sliding of the head of the
by the appearance of the tangential
fieient of friction. The.conditicn
first kind must be
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rotor along the ring is accompanied

force vQ, where v is the coef-
for the existence of motion of the

&)2 A -C siny

h3 > QP (22)

From equations (21) and (22), the following equation is obtained
by the Kapitsa method (reference 2):

92
‘cr

2

where ~ is the angular veloci~~ ccrres”ponding to

eni~.gof the spirxile. The concliti.onof the passage

critical velocity is obtained in tineform

(23)

( 23a)

the straight-

through the

(24)

By denoting the gap between the head of the rotor and the ring
as e

(25)

The preceding inequality shows that the ultracentrifuge rotor cannot
pass through the critical velocity if the space between the head and
the ring is small, if the coefficient of friction between them is small,
or finally, if the unbalance of the rotor is lsrge.

.. .. .... ,, .,,,. ,. , , , .,.. . ,, .. .... -.-.. --.--—-—
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The increase in the gap
of the spindle.

The maximum permissible
ment Gf the end of the rotor
is All. Tinestress arising
in the case where the force
is

9

e, however, is limited by the strength

value of e is determined. The displace-
spindle under the action of a unit,force
at the place where the spindle is stopped,
x is applied to the end of the spindle, ~

a = xz/w

where W is the moment of resistance of the section and the deflection
is equal to A1lX. By giving a value of the deflection equal to e

corresponding to the occurrence in the critical section of a stress
equal to the permissible stress Uz

e ’11 ‘Zw
= ‘llX = z (26)

In accordance with equation (18)

or

12R4 Gz rO 1 1 rO
e= —- —-—

1[
3 ~2‘+3r~ R

ER- r. 3R2

12 az
-—e= EIR-ro13 rOR2+&R3 ‘o?

(27)

(23)

The pressure at the
of the rotor through the

upper bearing and at the instant of the passage
critical velocity is determined.

In equation (26), the pressure on the bearing is evidently equal
to the magnitude x or

Uzw
x

‘T (29)

After passing through the critical point, the spindle remains
bent bY an amount practically equal to Poh. The force due to the

bending transmitted. on the bearing is equal to

%1 Doxl.—
h

(30)

..., .
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or by substituting the value

xl =
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5~ from equation”

2A
‘cr -CFO

h3
(31)

CONCLUSIONS

Particular attention is to be paid to tineproblem of the passa~e
of an utlracentrifuge rotor throu~h the critical velocity. The dif-
ficulties encountered in the practical use of ultracentrifuges are
connected with this passage.

The dynamical balance of the rotors has often been ne[;lected,
whereas their balance increases in connection with the too frequent
removal of the rotors from the body of the centrifuge for cleanin~.
A result of the increase in the unbalemce may be the loss in the
ability to pass through the critical velocity and the rapid wear of
the bearings (the force actinE on the bearing, equation (31)).

The preceding discussion points out the factors that affect the
passage of rotors through the criticeJ point, namely, the gap between
the head and the ring, the coefficient of friction, and the Unbalance.
These factors cannot be excluded in the operation and design of
ultracentrifuges.

Translated by S. Reiss,
National Advisory Committee
for Aeronautics.
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